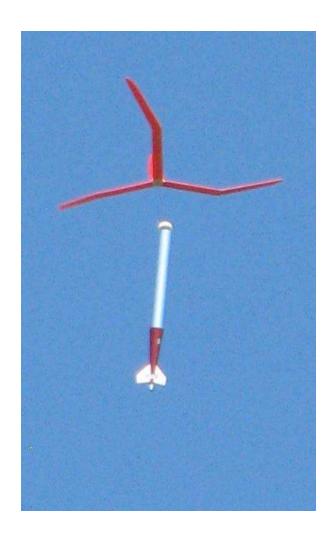
What's New in Designing for Helicopter Duration

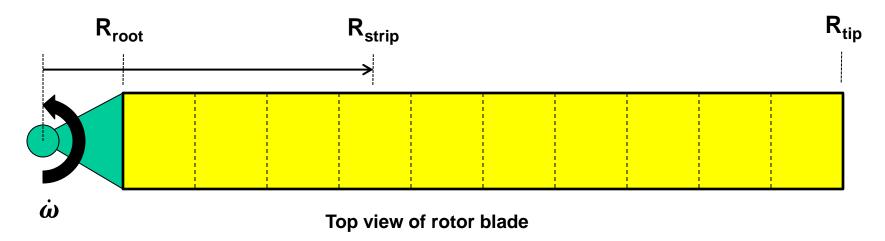
Prepared for

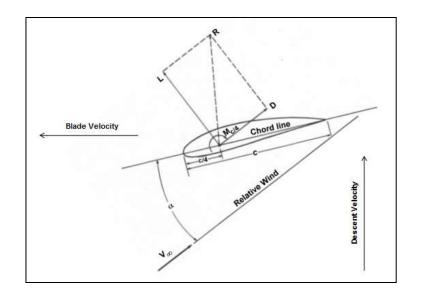

NARCON-2017

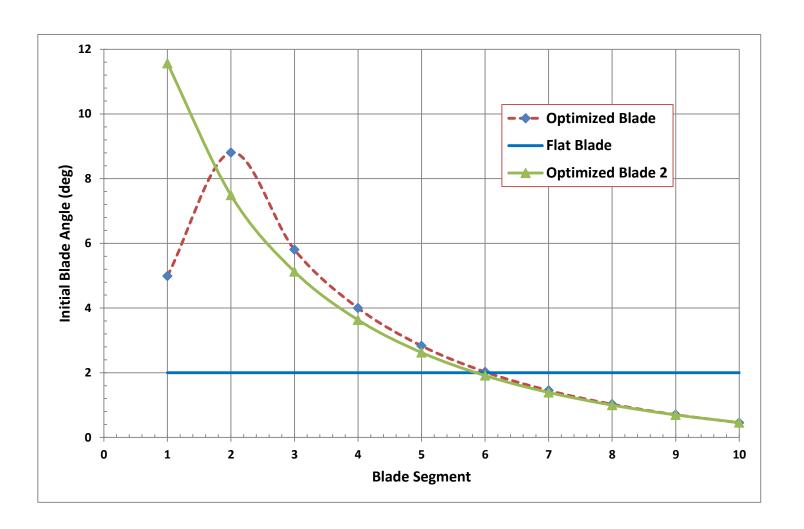
Chris Flanigan

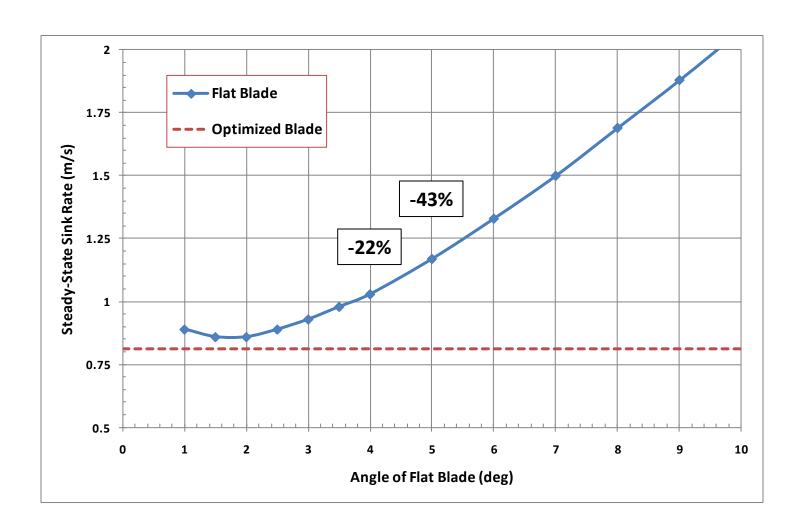
NAR 17540 L1

Topics

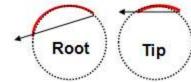

- Quick review of theory
- Blade design & airfoil selection
- Hub construction
- Internal or external rotor
- Spin-up requirements
- Analysis software
- Popular designs
 - Rota-Roc, Rose-a-Roc, Apogee
- G HD at NARAM-59
- Summary

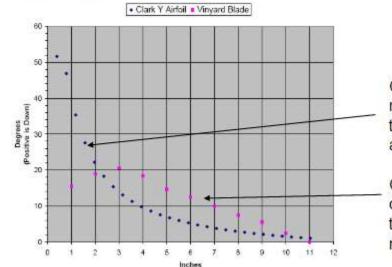

Helicopter Blades Have Unique Aerodynamics


Efficient Blade Angle Depends on Radius


- Blade rotary velocity = $\dot{\omega}$
 - $-V_{strip} = \dot{\omega} R_{strip}$
- Descent velocity same for all strips
- Calculate lift & drag of each strip based on local aero and blade angle

Optimum Blade Uses Twisted Profile


Flat Blades Have Lower Performance



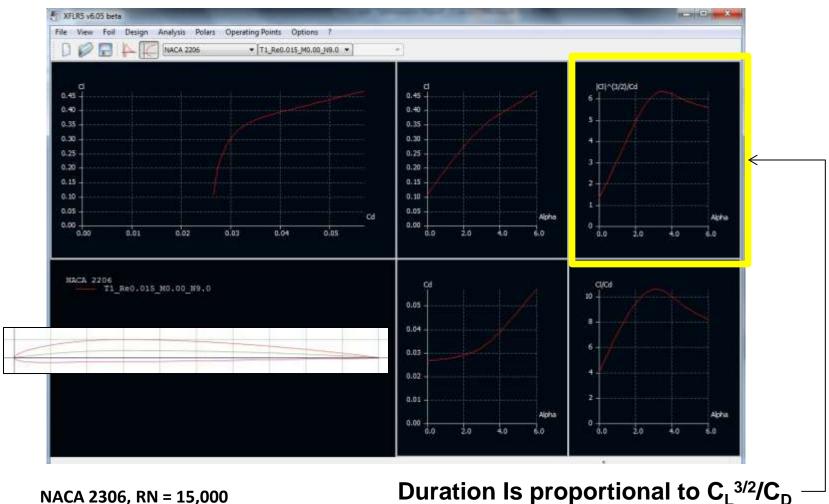
Technique To Make a "Twisted" Blade

- 3 non-folding balsa blades with curved airfoil generated by forming chord around 40mm diameter cylindrical mandrel
- Change in blade pitch vs span along the blade is created by change in blade chord with span
- Semi-circular airfoil produces lift over a very wide range of angle of attack (+ or – 20 degrees) so it spins up quickly and handles both calm and wind

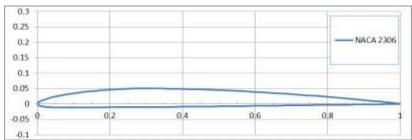
Clark-Y airfoil produces lift over limited range of "negative" angle of attack, so the twist angle must carefully follow effective air stream direction

Curved plate produces lift from -20 to +20 degree angle of attack, so optimization of twist angle with respect to air stream is not as critical

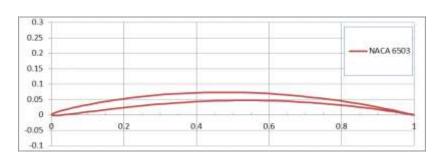
Two-Segment Blades Approach Performance of Optimally Twisted Blades

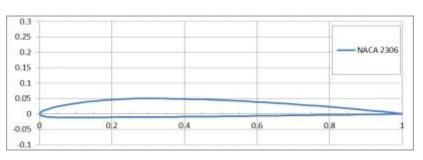

- Two segments of straight blades
 - Inboard segment at "steep" angle
 - Outboard segment at "shallow" angle
- Used HD spreadsheet to calculate best angles

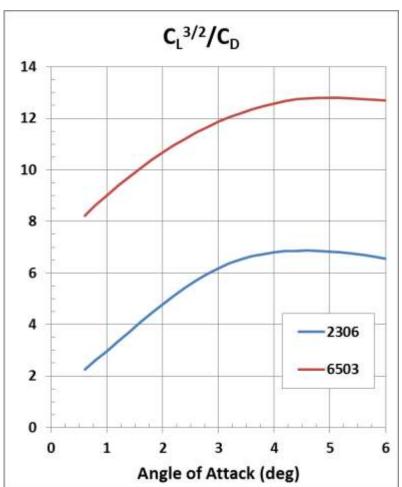
Blade Description	Sink Rate (m/s)	Ratio	Angle 1 (deg)	Angle 2 (deg)	Spin-Up Torque
Optimized	0.90				2.5
20/80	0.95	-5.6%	14.0	1.6	2.3
30/70	0.94	-4.4%	8.5	1.5	2.3
40/60	0.93	-3.3%	6.0	1.3	2.4
50/50	0.92	-2.2%	4.4	1.1	2.5
60/40	0.92	-2.2%	3.4	1.0	2.3
70/30	0.93	-3.3%	2.7	0.9	2.7

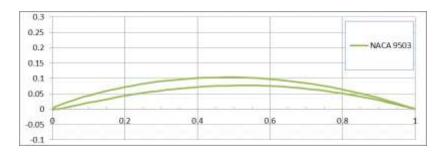

Carbon rod and CA at joint

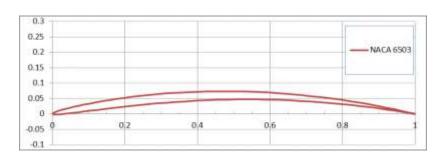
Used XFLR5/XFOIL to Calculate Airfoil Performance

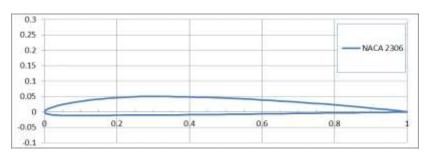


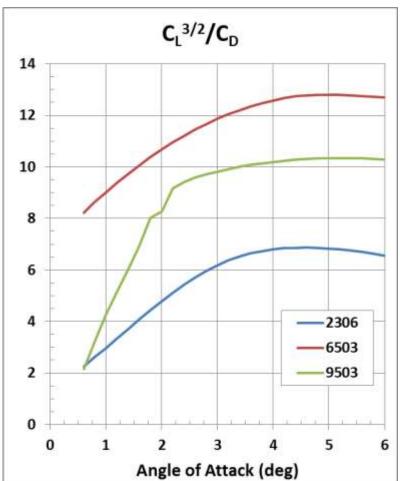

Thin Cambered Airfoils Proved Better Aero Performance for HD Blades



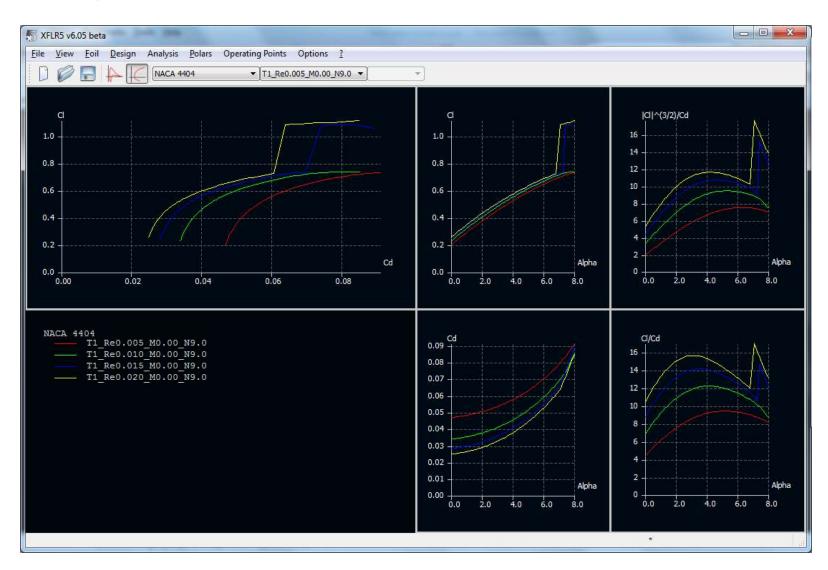

Thin Cambered Airfoils Proved Better Aero Performance for HD Blades







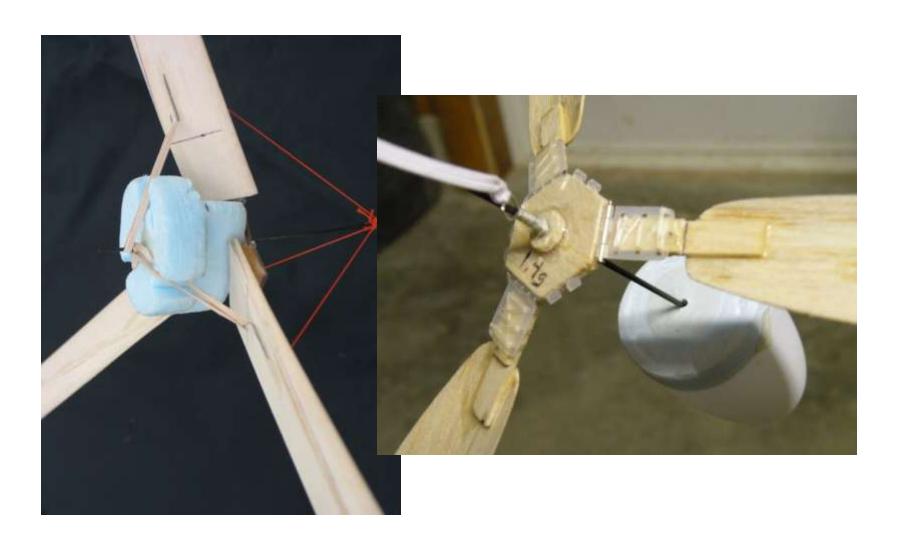
Thin Cambered Airfoils Provide Better Aero Performance for HD Blades



Reynolds Number Variation Affects Airfoil


Laser Cutters and 3D Printers Improving Hub Design

Traditional hub


- Dubro or Klett hinges and plywood hub plate
- Manually intensive
- Laser cutter (Apogee)
 - Thin, light plywood parts
 - Precise sizing
 - Simplified assembly

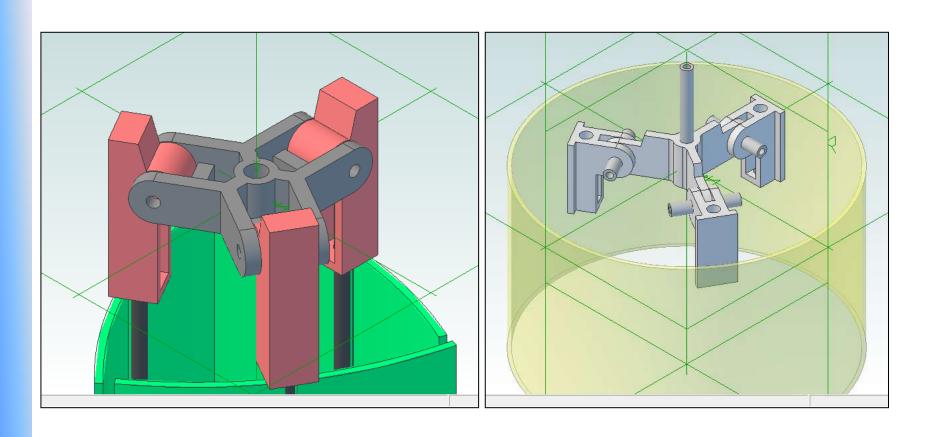
3D printing

- Precise sizing
- New design is very light
- Simplified assembly

S9 Hub Designs

Vinyard/Barber Hub Design

Tim Van Milligan Hub Design



Antonio Mazzaracchio (Italy) Hub Design

Flanigan 3D-Printed Hub Designs

Internal Blade Designs Are Very Competitive

- S9A (FAI) all use internal blade design
- US competitors use both external and internal blade designs
 - External blade: Rotaroc, Rose-a-Roc, Whirl-a-While, etc.
 - Internal blade: FAI variants (typically 40 mm diameter bodies)
- External blade designs are simpler (ejection)
- Internal blade designs usually achieve higher ascents
- Internal blade designs successful at recent NARAMs
 - A HD at NARAM-58: 1st in B Div, 1st, 2nd, & 3rd in C Div, 1st & 2nd in T
 - FAI 40 mm designs
 - B HD at NARAM-57: 1st place in A, B, and C divisions
 - Gyro Chaser by Apogee

Spin-Up Requirement

- Flat blades use 3-5 deg angle
 - 3 deg = 13% performance loss
 - 4 deg = 22%
 - 5 deg = 43%
- Twisted blades have start-up torque with minimal performance loss
- For internal rotor design, it's critical that rotor assembly is significantly lighter than body
 - Can be challenging when using lightweight "fiberglass paper" for body

Software for Helicopter Design

- No general purpose HD model rocket design program
 - No RockSim or OpenRocket for HD
- Rotor/propeller codes (strip theory, blade element theory)
 - Helicopter Duration (S9) spreadsheet by Chris Flanigan
 - "Java Prop" by Dr. Martin Hepperle
 http://www.mh-aerotools.de/airfoils/javaprop.htm
- Airfoil programs
 - XFOIL
 - XFLR5 (includes XFOIL with GUI)
- Programs by academia
 - XROTOR, QMIL, and QPROP by Prof. Mark Drela (MIT)
- Industry programs
 - Windmill design and performance
 - CFD (Ansys FLUENT, Siemens STAR-CCM+, etc.)
 - \$\$\$

Popular Designs

- Apogee carries five HD models!
 - Rotary Revolution (FAI style, 40 mm body, A motors)
 - Gyro Chaser (24 mm body, 18 mm motors)
 - Mini-copter (18 mm body, 13mm motors)
 - Heli-Roc (rotaroc style)
 - Texas Twister (Gyroc style)
- Plans on NAR web site
 - http://www.nar.org/contest-flying/competition-guide/durationevents/helicopter-duration/
- Semroc (eRockets.biz) Heli-Roctor
- Fliskits Tiddlywink
- QCR not currently operating

Approaches to Improve Designs

- More blades
- More blade chord
 - Wider blades, chordwise folding blade
- More blade span
 - Longer blades, spanwise folding blade
- Improved boost aerodynamics
- Lighter, lighter, lighter
- Betz limit
 - https://en.wikipedia.org/wiki/Betz%27s_law

Thoughts on G HD for NARAM-59

- High boost...
 - Internal blades
- ... but not too high!
 - Have to be able to observe blade rotation to get qualified flight
 - Recoverable
 - Max impulse, max altitude may not be desirable
- Rugged and reliable
 - High boost acceleration and probably high velocity at deployment
 - Need strong design (but not too heavy)
 - Score is sum of two flights (need two qualified flights)
- A very challenging set of design options!
- Winners will set long-standing records
 - Current NAR records: 105 sec (A), 156 sec (C), 242 sec (T)

My Approach for G HD

- Internal rotor
 - Avoids excess loads during ascent
 - Use chord-wise folding blades to increase blade area
 - Heavy duty 3D-printed hub and arms
- Large diameter model (BT-80)
 - Room for rotor
 - Controls altitude
 - Lightweight tubing (not BT-80H)
- Minimum G motor
 - Control altitude
- What's your approach? Discussion?

Summary

- Twisted blades are good
- Thin, cambered airfoils are good
- Laser cut and 3D printed hubs provide new options
- Light, light for best performance
 - For "small" models
 - G HD might win by being rugged and working
- Always look for thermals

Backup Slides

Prior Work ...

- Flanigan (2012)
 - Excel spreadsheet based on strip theory aerodynamics
 - Simulates initial startup through steady-state descent
- Peterson, et. al. (2012)
 - Examined standard and "spill hole" designs
- Prior work in HD methodology
 - Overview by Trip Barber (NAR web site)
 - Gassaway, Steele, McCarthy (NARAM, 1983)
 - Tim Van Milligan (NARAM, 1991)
 - Professional and academic programs
 - XROTOR, QMIL, QPROP programs by Prof. Mark Drela (MIT)

Blade-to-Hub Attachment Methods

- Vinyard/Barber design
 - Dubro hinges
- Tim Van Milligan design
 - 1/32" plywood arm
- Single spar connection
 - Graphite rod with plywood hinges similar to Robart Hinge Point
- Wide arm design
 - Similar to TVM design but using Gatorfoam for greater AOA control
- Two arm design
 - Similar to TVM design but with two arms for greater AOA control
- Vinyard/Barber design with custom "C" channel
 - Use "C" channel to accommodate attachment of rotated blade
- Butt splice joint with reinforcement
 - Simple