Who am I?

L3 Start To Finish

By: Steve Lubliner, 9968 East Domenic Ln, Tuscon, AZ 85730 (103056.621@compuserve.com)

NARCON 2003

I'm Steve Lubliner, NAR 22152

- Flight test and instrumentation engineer for Raytheon Missile Systems
- Over 30 years in the sport rocketry hobby
- Former L3CC chairman

Contact me at:

Phone: 520-296-1689

Email: 103056.621@compuserve.com

Snail mail:

Stephen Lubliner

9968 E. Domenic lane

Tucson, AZ 85730

What are the requirements?

You must be Level 2 certified

Flight requirements

- The flight requirement is a safe, stable flight powered by a "M", "N", or "O" motor
- Any NAR or Tripoli certified motor is permitted
 - Hybrids are permitted
 - » Individual must show experience with hybrids prior to Level 3 usage

Model requirements

- No clusters or staging for certification attempts
- "Substantially" built by the modeler, general guidelines are:
 - Fabrication of the engine mount with centering rings (as applicable)
 - Alignment and mounting of the individual fins
 - » Prefabricated fin canisters are specifically disallowed)
 - Installation of the attachment points for the recovery system
 - Mounting and installation of the airframe electronics
 - ✓ Final flight preparations including pyrotechnics installation, recovery system packing, motor preparation and installation

What are the requirements (continued)?

- Model requirements (continued)
 - Each parachute event must be initiated by redundant control systems
 - Redundant power sources, safe and arm provisions, control logic and output devices (e.g. bridgewires, electric matches)
 - Redundancy is not required for:
 - » Energetic materials (e.g. black powder)
 - » Parachutes
 - » Attach points
 - » Risers and disconnects
 - Must be able to "disarm" all pyrotechnic devices in the rocket
 - Disarm mean breaking the connection between the pyrotechnic device and the power source
 - Turning off the device controlling the pyrotechnic is not sufficient

Model design choices

Model design

- Conventional "three fins and a nosecone" is the suggested approach
 - Analysis tools are available and proven
 - Basic construction skills are demonstrated
- "Oddrocs" are not specifically disallowed
 - Spools and pyramids a generally frowned upon by the L3CC
 - » Analysis tools are lacking, e.g.
 - Barrowman stability equations do not apply
 - » Demonstration of construction skills may not be easily discerned
 - Other oddroc designs may be considered on an individual basis

Model Design and Approval

Step 1 - Preliminary design

- Choose a basic model configuration
 - If you insist on an oddroc contact a L3CC representative for approval of the model type
 - ✓ This is an area of considerable discussion among the L3CC members
- "Pre-design" the model
 - ✓ Basic diameter, length, fin configuration
 - » Parts lists showing the intended components are good
 - ✓ Intended motor
 - ✓ Expected weight
 - ✓ Parachute size(s)
 - Internal layout including recovery compartments, electronics bays
 - Electronics components selections
 - C.G. and C.P. positions

- Step 1 Preliminary design (continued)
 - Electronics components selections (continued)
 - It is recommended that the redundant systems not be identical
 - » A design or common manufacturing flaw may cause both units to fail at the same time
 - » A personal preference is that the sensing method for each system be unique, sensing methods include:
 - Barometric
 - Magnetic sensing (Earth's magnetic field)
 - Acceleration
 - Time
 - Arming and disarming methods
 - » Pyrotechnics must be disconnected from their power source
 - A shunt across the pyrotechnic leads is not sufficient

- Step 1 Preliminary design (continued)
 - Perform the initial performance analyses
 - ✓ Expected altitude, maximum velocity
 - » Recommend staying away from transonic and supersonic flight
 - Aerodynamic environment changes
 - Changes may adversely affect barometric sensing electronics
 - ✓ Initial acceleration and velocity at the end of the launch rail/rod
 - » Target is 4 to 5 g's initial acceleration
 - Descent rate during recovery
 - » Not greater than 20 feet per second is the guideline

- Step 2 Preliminary design review
 - Submit you preliminary design to the L3CC for review
 - This is optional but recommended
 - » Provide the design and performance information
 - Computer printouts and drawing are not required
 - The documentation just needs to tell the whole story
 - ✓ The L3CC will offer suggestions or cautions as necessary

Model Design and Approval (continued)

Step 3 - Start building the model

- Prepare the Construction Package
 - ✓ L3CC needs to see the construction methods during model build
 - » Either have the L3CC member physically inspect the model during construction
 - » Or, take lots of photographs
 - Digital or film technologies are both acceptable
 - Try to have a size reference (e.g. a coin or ruler) in the picture
 - ✔ Prepare the Construction Package documentation
 - » Final drawings
 - Needs to show the layout of the parts and pieces
 - Does not have to be computer aided design or professionally drawn (but it's nice if it is)
 - » Parts list
 - » Photographs showing construction

Model Design and Approval (continued)

Step 4 - Construction Package Affidavit

- Present the Construction Package to the L3CC
- At least 5 days prior to the flight attempt
 - More time is better
- The L3CC is looking for the essential information
 - Lots of "stuff" does not always make an adequate report
 - Clear and concise does!

Model Design and Approval (continued)

Step 5 - Prepare the Recovery Package

- Document the recovery system components, including:
 - Drogue parachute (size, type, manufacturer)
 - Main parachute (size, type, manufacturer)
 - Parachute packing devices (e.g. bags, sleeves)
 - Anchor and connecting (e.g. quick links) hardware
 - Risers and riser routing
- Description of the recovery initiation control components
 - Logic and control modules
 - Power sources
 - Safe and arm provisions
 - Output devices (e.g. flashbulbs, electric matches)
 - Schematic/wiring diagram
 - Mounting structure/access features
 - Pyrotechnic devices (type, quantity, volume/weight of pyrotechnic materials)

- Step 5 Prepare the Recovery Package (continued)
 - Describe the operation and analysis of the recovery system
 - Sequence of events
 - ✔ Parachute size/descent rate determination
 - » e.g. manufacturer's recommendations
 - » Calculations
 - ✓ Determination method for pyrotechnic materials volume/weight
 - Describe how the pre-flight tests of the recovery electronics
 - Ground tests
 - Flight tests
 - Document the extent of the tested components, including:
 - » Electronic modules
 - » Power supplies
 - » Safe and arm provisions
 - » Bridgewire type

Model Design and Approval (continued)

Step 6 - Recovery Package Affidavit

- Present the Recovery Package to the L3CC
 - Does not have to be the same L3CC member who reviewed the Construction Package
- At least 5 days prior to the flight attempt
 - Again, more time is better
- A recovery failure is the most likely cause of a failure to certify
 - Document your recovery system thoroughly
 - » It will help your L3CC representative help you

Model Design and Approval (continued)

Step 7 - Certification Package

- Contains the Construction and Recovery Systems packages
- Calculations containing center of pressure
 - May be hand or computer simulations
 - » Some L3CC members have expressed a preference for hand calculations
 - Thought is that a hand calculation shows a better understanding of the process
- Scale drawing showing:
 - Major dimensions
 - » e.g. dimensions required for stability analysis
 - » Calculated center of pressure
 - » Aft center of gravity limit in the Level 3 flight configuration

Model Design and Approval (continued)

Step 7 - Certification Package (continued)

- Description of the expected flight profile including:
 - Intended motor
 - Launch weight
 - Estimated drag coefficient
 - Velocity as the rocket leaves the launch system
 - Maximum expected velocity
 - Maximum expected altitude
 - Maximum expected acceleration
 - Flight profiles under worst case and best case as well as nominal conditions are recommended
- Pre-launch checklist
- Post-recovery checklist
- "Contingency" checklist for a failure or launch abort
- Declaration of design features for breakaway or easy replacement to minimize landing damage

- Step 7 Certification Package (continued)
 - Checklist comments
 - Include an equipment and consumables list, e.g.
 - » Launch pad items
 - » Accessibility items (e.g. ladders)
 - » Tools
 - » Wadding, black powder
 - » Safety equipment (e.g. face shield, eye protection)
 - Highlight areas where extra caution is required or hazards are present
 - » Loading pyrotechnic charges
 - » Testing pyrotechnic systems
 - » Arming

Certification Flight

Step 8 - Certification Pre-Flight

- Two (2) flight witnesses are required
 - ✓ One must be a L3CC member
 - » The L3CC member is not required to be one of the members who signed the Construction or Recovery affidavits
- Model will be pre-flight inspected against the Certification Package
- Safety for flight will be verified
 - ✓ Stability is acceptable
 - ✓ Flight profile is safe and within the FAA waiver limits

Certification Flight (continued)

Step 9 - Certification Flight

- The model is flown, recovered, and inspected
 - ✓ Flight requirements
 - » Stable
 - » Within FAA waiver limits
 - Certification failure if the waiver is "busted"
 - » Safe recovery
 - Anomalous operation of the recovery system will still allow for certification if the recovery was safe
 - No separation of larger parts (>8 ounces) that do not have their own recovery device
 - ✓ Post-flight requirements
 - » Motor casing remains within the airframe
 - » Airframe is complete
 - » No damage requiring repair that prevents an immediate reflight of the model

Certification Flight (continued)

- Step 9 Certification Flight (continued)
 - Sign off the certification documentation for successful flights
 - Submit the certification documentation to NAR Headquarters
 - The certification package does not have to be provided to NAR Headquarters
- And then you are certified!

Lessons Learned (continued)

- Lesson 2- Avoid swept back or straight fin trailing edges
 - Susceptible to landing damage

Forward swept trailing edge

Lessons Learned (continued)

Lesson 3- Riser attachment points

Bad design causes zippers

Simple Pleasure Rigging Plan

Simple Pleasure Recovery

Lessons Learned (continued)

Lesson 3- Riser attachment points (continued)

Note that the risers are pulled in separate directions

Lessons Learned (continued)

Lesson 3- Riser attachment points (continued)

Failure Cause

Failure Fix

Personal Practices

Use double pole double throw (DPDT) switches for pyrotechnic safing

Personal Practices (continued)

Use "double" bus design

- Use a minimum of two batteries to split loads
 - Continuous load bus
 - » Logic circuitry
 - » Use capacitors downstream of on-off switches to "filter" power in case of switch contact bounce from vibration/acceleration
 - Pulse load bus

Personal Practices (continued)

Pyrotechnic sizing

- Used "margin" firing method
 - Gradually increased the charge size until the minimum charge that achieved the desired separation was found (1.5 grams of black powder for Simple Pleasure)
 - ✓ Doubled that charge for flight (3.0 grams of black powder for flight)

Simple Pleasure Margin Firing