Who is this guy?

I'm Steve Lubliner, NAR 22152

- Flight test and instrumentation engineer for Raytheon Missile Systems
- Over 30 years in the sport rocketry hobby
 - ✓ Launches from 1/4"A" to "M"
 - Model rocket competition
 - Member of the National Association of Rocketry (NAR) Board
 - Chairman of the NAR's Sport Services Committee
 - » Responsible for NAR high power certification programs
 - » Responsible for the NAR Trained Safety Officer Program

Contact me at:

Phone: 520-296-1689

Email: 103056.621@compuserve.com

Snail mail:

Stephen Lubliner

9968 E. Domenic lane

Tucson, AZ 85730

Target audience for this talk

- Educators
 - Primarily elementary through junior high school
- Youth group leaders, e.g.
 - ✓ 4-H, scouting organizations, Civil Air Patrol, summer camp

Objective

- How to plan and prepare for a model rocket "build and fly" session for:
 - ✓ Youngsters (typically eight (8) to thirteen (13) years old) who are:
 - First or second time model rocket activity participants
- Model rocket operation will be discussed to a lessor extent
 - Potential safety concerns will be addressed
 - Safety practices will be addressed

Questions?

Don't wait to the end; ask it when you think of it

Rocket Science

What is Model Rocketry?

- It's safe!
 - ✓ Uses commercial, pre-made, certified model rocket motors
 - » Individuals do not mix propellant or "pack" their own motors
 - » Motors are highly reliable
 - Models are made of lightweight materials
 - » Typically wood, paper, and plastic
 - » Metal is limited to use in small components
 - Launch procedures are based on range safety procedures used by U.S. government test ranges, e.g.
 - » Safe distance from the launch pad
 - » Launch countdown and electrical motor ignition

Rocket Science (continued)

What is Model Rocketry (continued)?

- It's educational!
 - Various scientific and math principles are demonstrated, e.g.
 - » Newton's laws of motion
 - » Concepts of drag and stability
 - Useful as a tool for teaching engineering techniques, e.g.
 - » Computer simulations
 - » Trade studies
 - » Design optimization
 - » Design of experiments
- It's fun!
 - Craftsmanship skills
 - Creative outlet
 - Competition

Rocket Science (continued)

What is a Model Rocket?

- A model rocket weighs less than 1 pound at launch
- A model rocket contains less than 4 ounces of propellant
- A model rocket's structural parts, including the body, nosecone, and fins, are made of lightweight materials, e.g. plastic, paper, and wood
- A model rocket has a means of returning itself to the ground such that it may be flown again, e.g. a parachute
- A model rocket may not carry a payload that is designed to be flammable, explosive, or harmful to persons or property
- A model rocket may not carry a live biological payload

Rocket Science (continued)

Model Rocket Exploded View (pun intended)

Rocket Science (continued)

How does a model rocket motor work?

- The model rocket motor consists of the following components:
 - Case (typically made of thick wall paper tubing)
 - » Contains all of the model rocket motor components
 - Nozzle (typically made of clay)
 - » Accelerates the exhaust gases from the combustion chamber to produce thrust
 - Propellant charge (black powder in most model rocket motors)
 - » This is the fuel that powers the model during the launch phase
 - Delay charge
 - » This is the time delay that allows the model to slow down and coast to apogee
 - » It also provides smoke to track the model during its ascent
 - Ejection charge
 - » This is the charge that pushes the parachute or streamer from the model

Rocket Science (continued)

How does a model rocket motor work?

The inside story!

Rocket Science (continued)

What do the numbers on the model rocket motor mean? For example: A8-3

- The "A" is the total impulse or total "power" of the rocket motor
 - ✓ An "A" motor has a total impulse of 1.26 to 2.50 Newton-seconds
 - ✓ A "B" motor has a total impulse of 2.51 to 5.00 Newton-seconds
 - ✓ A "C" motor has a total impulse of 5.01 to 10.00 Newton-seconds
- Note that the total impulse doubles with each successive letter
 - ✓ A "G" motor has a total impulse of 80.01 to 160.00 Newton-seconds
- The "8" represents the average motor thrust in Newtons
 - ✓ Divide by 4.45 to get pounds force
- The "3" is the delay from motor burnout to ejection charge operation in seconds
 - A short delay is typically required for heavier models
 - A long delay is typically required for lightweight models

Planning Essentials

- Running a model rocket "build and fly" session takes advance planning
- There are four major questions to be addressed to plan the session:
 - The age group of the participants
 - Time available for building and flying
 - Space available for building and flying
 - The budget for the activity

Choosing the Model

Choose simple rockets for beginners and younger participants

- Less building time (for shorter attention spans)
- Easier instructions
- Less skill dependent
- Easier flight preparation

Features of simple rockets

- Single piece plastic fin units (e.g. Estes Alpha III, Estes Generic E2X)
- Single piece nose cones (Estes models)
- Streamer recovery
- Motor retention clips (all models on the following page)

Features that add complexity

- Wooden fins (e.g. Estes Alpha, Quest Astra)
- Parachutes (all models on the following page)
- "Friction" fitted motors

Choose a skills appropriate model!

Sample Beginner's Models

Estes Alpha, Estes Alpha III, Quest Astra

Custom Razor

Estes Generic E2X

Do you have time?

Simple kits take about 60 to 90 minutes to build

- Need to allow time for adhesives to set-up
 - Some steps require subassemblies to be dry before they are installed
- Some items are just time consuming, e.g.
 - Parachute assembly
- More complex kits can be built in the time span with prefabrication

Preparing the models for flight will take 15 to 20 minutes

- Safety briefing needs to be made
 - Takes about 5 minutes
 - Covers where to stand, no horseplay, countdown
- Install the rocket motor, prepare the recovery system

Do you have time (continued)?

Flying each rocket will average about 5 minutes per flight

- Set up the launch equipment (do it in advance if you can)
- Place the model on the launch pad and hook up the igniter clips
- Launch countdown, flight, and recovery
- The time per flight can be considerably reduced by multiple launch pads
 - Allows parallel launch operations
 - Minor increase in hazard level because more activities are happening at once

Do you have time (continued)?

Time management strategies

- Split building and flying sessions into separate sessions
- Prefabricate time consuming items
- Sequence the building steps to finish gluing operations early in the session
- Have a "snack "or lunch break after the models are assembled
 - Gives time for the models to "dry"
 - Do the safety briefing during the break
- Multiple launch systems to speed up the launches

Is space available?

Building space

- Need tables and chairs
 - ✓ Tables should be covered for protection from glue drips
 - » Newspaper or butcher paper
 - » Cheap paper or plastic tablecloths
 - Cutting surfaces should be provided if knives are required for construction
 - » Corrugated cardboard works well
 - Students need space to spread out
- Good ventilation is needed
 - Especially if plastic cements are required
 - » Plastic cements have unpleasant and hazardous fumes
- A wash basin is desirable to remove white or wood glue from hands

Is space available (continued)?

Launch site size

Rocket motor selection affects the recommended launch site size

"A" motors 100 ft by 100 ft launch site

"B" motors 200 ft by 200 ft launch site

✓ "C" motors 400 ft by 400 ft launch site

✓ "D" motors 500 ft by 500 ft launch site

✓ "E" motors 1000 ft by 1000 ft launch site

✓ "F" motors 1000 ft by 1000 ft launch site

✓ "G" motors 1000 ft by 1000 ft launch site

- 2 x "G" motors 1500 ft by 1500 ft launch site
 - » The above table is for single motor models.
 - » If multiple motors are used determine the equivalent motor on the above chart
 - » Note that individuals must be 18 years old or older to use "G: motors

Is space available (continued)?

Launch site size (continued)

- Model performance characteristics may modify the recommended launch site size
 - An alternative launch site size may be calculated as 1/2 of the maximum expected altitude
 - Models such as "B" powered egglofters typically do not exceed 200 to 300 feet in altitude
 - » This would suggest a 100 to 150 foot square launch site (smaller than the recommendation)
 - Recovery system types also should be considered
 - » Models with parachutes will drift further than tumble or streamer recovered models

Is space available (continued)?

- Launch site size (continued)
 - Launch sites should be situated to avoid:
 - **✔** Buildings
 - ✓ Vehicles and roadways
 - Trees and vegetation
 - Non-participants and spectators
 - Natural hazards (e.g. ditches)
 - Consideration should be given to the flight paths and landing areas for models that have recovery failures
 - The launch site should be relatively free of flammable materials, e.g. tall dry grass,
 - » To prevent fire in the event of a ground parachute deployment
 - ✓ Ballistic models (no recovery) can damage vehicles and buildings

How much will it cost?

Budgetary items

- Rocket models
 - Models recommended for beginners will typically cost between \$5.00 and \$10.00 each
 - » Bulk packs (12 to 25 models per pack) are available at discount
- Rocket motors
 - "A" through "C" motors typically used for the recommended beginner models typically cost about \$1.25 to \$2.00 each
 - » Remember that the motors are single use only; one for every flight
 - » Motors are typically sold in 3 or 4 packs
 - Bulk packs of up to 24 motors per pack offer price breaks
 - Motor bulk packs may also include spare igniters and wadding

How much will it cost(continued)?

Budgetary items (continued)

- Launch equipment (launch pad and launch controller)
 - ✓ Purchased equipment from the major manufacturers is available for between \$20.00 to \$30.00 per system
 - ✓ Launch pads can be built cheaply from 2" x 2" or 2" by 4" lumber for less than \$5.00 per launch pad
 - Launch controllers can be build for controlling a single launch pad or multiple launch pads
 - » Costs can be cheaper than purchased equipment to more expensive depending on the components used
 - » Schematics are available from the instructor or the book "Handbook of Model Rocketry" by G. Harry Stine

How much will it cost(continued)?

- Budgetary items (continued)
 - Expendables
 - Wadding
 - » Rocket manufacturer's wadding typically costs \$3.00 to \$4.00 a package
 - One package is good for 15 to 20 rocket flights
 - Wadding is sometimes included with the motor bulk packs
 - » Cellulose home insulation may also be used
 - Costs about \$7.00 a bale
 - One bale will last a "lifetime"
 - More difficult to use and harder to measure than manufacturer's wadding
 - » NEVER use paper towel, toilet paper, or any flammable material as wadding
 - The potential for fire is too great
 - Igniters
 - » Included with the rocket motors
 - » Spares are recommended because igniters sometimes fail
 - » Approximately \$0.50 each, figure on a 10% to 20% failure rate

How much will it cost(continued)?

Budgetary items (continued)

- Supplies
 - Adhesives and application bottles
 - Table protection
 - Paper towels
 - Sandpaper
 - Model decorations
 - » Self adhesive stickers are recommended
 - ✓ Toothpicks, cotton swabs
 - Masking tape